Обнаружение черных дыр. Черная дыра - что это и что будет, если в нее попасть

Черные дыры — единственные космические тела, способные притягивать силой гравитации свет. Они же являются самыми большими объектами Вселенной. Мы вряд ли в ближайшее время узнаем, что происходит возле их горизонта событий (известного как «точка невозврата»). Это самые таинственные места нашего мира, о которых, несмотря на десятилетия исследований, до сих пор известно очень мало. В этой статье собраны 10 фактов, которые можно назвать наиболее интригующими.

Черные дыры не втягивают в себя материю

Многие представляют черную дыру своеобразным «космическим пылесосом», втягивающим в себя окружающее пространство. На самом деле, черные дыры — это обычные космические объекты, обладающие исключительно сильным гравитационным полем.

Если бы на месте Солнца возникла черная дыра таких же размеров, Земля не была бы втянута внутрь, она вращалась бы по той же орбите, что и сегодня. Расположенные рядом с черными дырами звезды теряют часть массы в виде звездного ветра (это происходит в процессе существования любой звезды) и черные дыры поглощают только эту материю.

Существования черных дыр было предсказано Карлом Шварцшильдом

Карл Шварцшильд был первым, кто применил общую теорию относительности Эйнштейна, для того, чтобы обосновать существование «точки невозврата». Сам Эйнштейн не задумывался о черных дырах, хотя его теория позволяет предсказать их существование.

Шварцшильд сделал свое предположение в 1915 году, сразу вслед за тем, как Эйнштейн опубликовал общую теорию относительности. Тогда же возник термин «радиус Шварцшильда» - это величина, которая показывает, как сильно вам придется сжать объект, чтобы он стал черной дырой.

Теоретически, черной дырой может стать все, что угодно, при достаточной степени сжатия. Чем плотнее объект, тем более сильное гравитационное поле он создает. Например, Земля стала бы черной дырой, если бы ее массой обладал объект величиной с арахис.

Черные дыры могут порождать новые вселенные


Мысль о том, что черные дыры могут порождать новые вселенные кажется абсурдной (тем более, что мы все еще не уверены в существовании других вселенных). Тем не менее, подобные теории активно разрабатываются учеными.

Очень упрощенная версия одной из этих теорий заключается в следующем. Наш мир обладает исключительно благоприятными условиями для появления в нем жизни. Если бы какие-либо из физических констант изменились хотя бы чуть-чуть, нас бы не было в этом мире. Сингулярность черных дыр отменяет обычные законы физики и может (по крайней мере, в теории) породить новую вселенную, которая будет отличаться от нашей.

Черные дыры могут превратить вас (и все, что угодно) в спагетти


Черные дыры растягивают предметы, которые находятся рядом с ними. Эти предметы начинают напоминать спагетти (есть даже специальный термин - «спагеттификация»).

Это происходит благодаря тому, как работает сила притяжения. В настоящий момент ваши ноги находятся к центру Земли ближе, чем голова, поэтому они притягиваются сильнее. На поверхности черной дыры разница в силе притяжении начинает работать против вас. Ноги притягиваются к центру черной дыры все быстрее, так, что верхняя половина туловища не успевает за ними. Результат: спагеттификация!

Черные дыры испаряются со временем


Черные дыры не только поглощают звездный ветер, но и испаряются. Это явление было открыто в 1974 году и было названо излучением Хокинга (по имени Стивена Хокинга, сделавшего открытие).

Со временем черная дыра может отдать всю свою массу в окружающее пространство вместе с этим излучением и исчезнуть.

Черные дыры замедляют время вблизи себя


По мере приближения к горизонту событий время замедляется. Чтобы понять, почему это происходит, нужно обратиться к «парадоксу близнецов», мысленному эксперименту, часто используемому для иллюстрации основных положений общей теории относительности Эйнштейна.

Один из братьев-близнецов остается на Земле, а второй улетает в космическое путешествие, двигаясь со скоростью света. Вернувшийся на Землю близнец обнаруживает, что его брат постарел больше, чем он, потому что при движении на скорости, близкой к скорости света, время идет медленнее.

Приближаясь к горизонту событий черной дыры, вы будете двигаться с такой высокой скоростью, что время для вас замедлится.

Черные дыры являются самыми совершенными энергетическими установками


Черные дыры генерируют энергию лучше, чем Солнце и другие звезды. Это связано с материей, вращающейся вокруг них. Преодолевая горизонт событий на огромной скорости, материя на орбите черной дыры разогревается до крайне высоких температур. Это называется излучением абсолютно черного тела.

Для сравнения, при ядерном синтезе в энергию превращается 0,7% материи. Вблизи черной дыры энергией становятся 10% материи!

Черные дыры искривляют пространство рядом с собой

Пространство можно представить себе как растянутую резиновую пластинку с нарисованными на ней линиями. Если на пластинку положить какой-нибудь объект, она изменит свою форму. Так же работают и черные дыры. Их экстремальная масса притягивает к себе все, включая свет (лучи которого, продолжая аналогию, можно было бы назвать линиями на пластинке).

Черные дыры ограничивают количество звезд во Вселенной


Звезды возникают из газовых облаков. Для того, чтобы началось формирование звезды, облако должно остыть.

Излучение абсолютно черных тел мешает газовым облакам остывать и предотвращает появление звезд.

Теоретически, любой объект может стать черной дырой


Единственное отличие нашего Солнца от черной дыры — сила гравитации. В центре черной дыры она намного сильнее, чем в центре звезды. Если бы наше Солнце было сжато до примерно пяти километров в диаметре, оно могло бы быть черной дырой.

Теоретически, черной дырой может стать все, что угодно. На практике же мы знаем, что черные дыры возникают только в результате коллапса огромных звезд, превышающих Солнце по массе в 20-30 раз.

На днях Стивен Хокинг всколыхнул научную общественность, заявив, что чёрных дыр не существует. Вернее, они представляют собой совсем не то, что считалось ранее.

По мнению исследователя (которое изложено в работе «Сохранение информации и прогнозы погоды для черных дыр»), то, что мы называем чёрными дырами, может существовать без так называемого «горизонта событий», за который вырваться уже ничто не может. Хокинг считает, что чёрные дыры удерживают свет и информацию только какое-то время, а потом «выплёвывают» обратно в космос, правда, в изрядно искажённом виде.

Пока научное сообщество переваривает новую теорию, мы решили напомнить нашему читателю то, что считалось «фактами о чёрных дырах» до сих пор. Итак, до сих пор считалось, что:

Свое название чёрные дыры получили потому, что всасывают свет, который касается ее границ, и не отражают его

Формируясь в момент, когда достаточно сжатая масса вещества деформирует пространство и время, черная дыра имеет определенную поверхность, называемую «горизонтом событий», знаменующую собой точку невозврата.

Близко к уровню моря часы идут медленнее, чем на космической станции, а вблизи черных дыр и того медленнее. Это каким-то образом связано с силой тяжести.

Ближайшая черная дыра находится примерно в 1600 световых лет от нас

Наша галактика усеяна черными дырами, однако ближайшая из тех, что теоретически способны уничтожить нашу скромную планету, находится далеко за пределами нашей Солнечной системы.

Огромная черная дыра находится в центре галактики Млечный Путь

Она расположена на расстоянии 30 тысяч световых лет от Земли, а её размеры более чем в 30 миллионов раз превышают размеры нашего Солнца.

Черные дыры, в конце концов, испаряются

Считается, что ничто не может вырваться из черной дыры. Единственное исключение из этого правила – радиация. По мнению некоторых ученых, по мере того, как черные дыры излучают радиацию, они теряют массу. В результате этого процесса черная дыра может и вовсе исчезнуть.

Черные дыры имеют форму не воронки, а сферы

В большинстве учебников вы увидите черные дыры, которые выглядят, как воронки. Это происходит потому, что они проиллюстрированы с точки зрения гравитационного колодца. В действительности они больше похожи на сферу.

Вблизи черной дыры всё искажается

Черные дыры обладают способностью искажать пространство, и, поскольку они вращаются, то искажение усиливается по мере вращения.

Черная дыра может убить ужасным образом

Хотя это кажется очевидным, что черная дыра несовместима с жизнью, большинство людей думают, что там их бы просто раздавило. Не обязательно. Вас, скорее всего, растянуло бы до смерти, потому что часть вашего тела, первой достигшая «горизонта событий» оказалась бы под значительно большим влиянием силы тяжести.

Черные дыры не всегда черные

Хотя они известны своей чернотой, как мы уже говорили ранее, они на самом деле излучают электромагнитные волны.

Черные дыры способны не только разрушать

Конечно, в большинстве случаев, так и есть. Однако существуют многочисленные теории, исследования и предположения о том, что черные дыры действительно могут быть приспособлены для получения энергии и для космических путешествий.

Открытие черных дыр принадлежит не Альберту Эйнштейну

Альберт Эйнштейн только возродил теорию черных дыр в 1916 году. Задолго до того, в 1783 году, ученый по имени Джон Митчелл первым разработал эту теорию. Это произошло после того, как он задался вопросом, может ли гравитация стать настолько сильной, что даже легкие частицы не могли бы избежать ее.

Черные дыры гудят

Хотя вакуум в космосе на самом деле не передает звуковых волн, если слушать с помощью специальных инструментов, то можно услышать звуки атмосферных помех. Когда черная дыра затягивает что-то внутрь, ее горизонт событий ускоряет частицы, вплоть до скорости света, и они производят гул.

Черные дыры могут генерировать элементы, необходимые для зарождения жизни

Исследователи считают, что черные дыры создают элементы по мере своего распада на субатомные частицы. Эти частицы способны создавать элементы тяжелее гелия, такие как железо и углерод, а также многие другие, необходимые для формирования жизни.

Черные дыры не только «проглатывают», но и «выплевывают»

Черные дыры известны тем, что всасывают все, что оказывается вблизи их горизонта событий. После того, как что-то попадает в черную дыру, оно сдавливается с такой чудовищной силой, что отдельные компоненты сжимаются и в конечном счете распадаются на субатомные частицы. Некоторые ученые предполагают, что эта материя затем выбрасывается из того, что называют «белой дырой».

Любая материя может стать черной дырой

С технической точки зрения, черными дырами могут становиться не только звезды. Если бы ключи от вашей машины уменьшились до бесконечно малой точки, сохранив при этом свою массу, то их плотность достигла бы астрономического уровня, и сила их тяжести увеличилась бы до невероятности.

Законы физики теряют силу в центре черной дыры

Согласно теориям, вещество внутри черной дыры сжимается до бесконечной плотности, а пространство и время перестают существовать. Когда это происходит, законы физики перестают действовать, просто потому, что человеческий разум не способен вообразить предмет, имеющий нулевой объем и бесконечную плотность.

Черные дыры определяют количество звезд

По мнению некоторых ученых, число звезд во Вселенной ограничено количеством черных дыр. Это связано с тем, как они влияют на газовые облака и образование элементов в тех частях Вселенной, где рождаются новые звезды.

С. ТРАНКОВСКИЙ

Среди наиболее важных и интересных проблем современной физики и астрофизики академик В. Л. Гинзбург назвал вопросы, связанные с черными дырами (см. "Наука и жизнь" №№ 11, 12, 1999 г.). Существование этих странных объектов было предсказано более двухсот лет назад, условия, приводящие к их образованию, точно рассчитали в конце 30-х годов XX века, а вплотную астрофизика занялась ими менее сорока лет назад. Сегодня научные журналы мира ежегодно публикуют тысячи статей, посвященных черным дырам.

Образование черной дыры может происходить тремя путями.

Так принято изображать процессы, идущие в окрестностях коллапсирующей черной дыры. С течением времени (Y) пространство (X) вокруг нее (закрашенная область) сжимается, устремляясь к сингулярности.

Гравитационное поле черной дыры вносит сильнейшие искажения в геометрию пространства.

Черная дыра, невидимая в телескоп, обнаруживает себя только по своему гравитационному воздействию.

В мощном поле тяготения черной дыры происходит рождение пар частица-античастица.

Рождение пары частица-античастица в лаборатории.

КАК ОНИ ВОЗНИКАЮТ

Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в двести пятьдесят раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, что самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми.
Пьер Симон Лаплас.
Изложение системы мира. 1796 год.

В 1783 году английский математик Джон Митчел, а спустя тринадцать лет независимо от него французский астроном и математик Пьер Симон Лаплас провели очень странное исследование. Они рассмотрели условия, при которых свет не сможет покинуть звезду.

Логика ученых была проста. Для любого астрономического объекта (планеты или звезды) можно вычислить так называемую скорость убегания, или вторую космическую скорость, позволяющую любому телу или частице навсегда его покинуть. А в физике того времени безраздельно господствовала ньютоновская теория, согласно которой свет - это поток частиц (до теории электромагнитных волн и квантов оставалось еще почти полтораста лет). Скорость убегания частиц можно рассчитать исходя из равенства потенциальной энергии на поверхности планеты и кинетической энергии тела, "убежавшего" на бескончно большое расстояние. Эта скорость определяется формулой #1#

где M - масса космического объекта, R - его радиус, G - гравитационная постоянная.

Отсюда легко получается радиус тела заданной массы (позднее получивший название "гравитационный радиус r g "), при котором скорость убегания равна скорости света:

Это значит, что звезда, сжатая в сферу радиусом r g < 2GM /c 2 , перестанет излучать - свет покинуть ее не сможет. Во Вселенной возникнет черная дыра.

Несложно рассчитать, что Солнце (его масса 2 . 10 33 г) превратится в черную дыру, если сожмется до радиуса примерно 3 километра. Плотность его вещества при этом достигнет 10 16 г/см 3 . Радиус Земли, сжатой до состояния черной дыры, уменьшился бы примерно до одного сантиметра.

Казалось невероятным, что в природе могут найтись силы, способные сжать звезду до столь ничтожных размеров. Поэтому выводы из работ Митчела и Лапласа более ста лет считались чем-то вроде математического парадокса, не имеющего физического смысла.

Строгое математическое доказательство того, что подобный экзотический объект в космосе возможен, было получено только в 1916 году. Немецкий астроном Карл Шварц-шильд, проведя анализ уравнений общей теории относительности Альберта Эйнштейна, получил интересный результат. Исследовав движение частицы в гравитационном поле массивного тела, он пришел к выводу: уравнение теряет физический смысл (его решение обращается в бесконечность) при r = 0 и r = r g .

Точки, в которых характеристики поля теряют смысл, называются сингулярными, то есть особыми. Сингулярность в нулевой точке отражает точечную, или, что то же самое, центрально-симметричную структуру поля (ведь любое сферическое тело - звезду или планету - можно представить как материальную точку). А точки, расположенные на сферической поверхности радиусом r g , образуют ту самую поверхность, с которой скорость убегания равна скорости света. В общей теории относительности она именуется сингулярной сферой Шварц-шильда или горизонтом событий (почему - станет ясно в дальнейшем).

Уже на примере знакомых нам объектов - Земли и Солнца - ясно, что черные дыры представляют собой весьма странные объекты. Даже астрономы, имеющие дело с веществом при экстремальных значениях температуры, плотности и давления, считают их весьма экзотическими, и до последнего времени далеко не все верили в их существование. Однако первые указания на возможность образования черных дыр содержались уже в общей теории относительнос-ти А. Эйнштейна, созданной в 1915 году. Английский астроном Артур Эддингтон, один из первых интерпретаторов и популяризаторов теории относительности, в 30-х годах вывел систему уравнений, описывающих внутреннее строение звезд. Из них следует, что звезда находится в равновесии под действием противополож но направленных сил тяготения и внутреннего давления, создаваемого движением частиц горячей плазмы внутри светила и напором излучения, образующегося в его недрах. А это означает, что звезда представляет собой газовый шар, в центре которого высокая температура, постепенно понижающаяся к периферии. Из уравнений, в частности, следовало, что температура поверхности Солнца составляет около 5500 градусов (что вполне соответствовало данным астрономических измерений), а в его центре должна быть порядка 10 миллионов градусов. Это позволило Эддингтону сделать пророческий вывод: при такой температуре "зажигается" термоядерная реакция, достаточная для обеспечения свечения Солнца. Физики-атомщики того времени с этим не соглашались. Им казалось, что в недрах звезды слишком "холодно": температура там недостаточна, чтобы реакция "пошла". На это взбешенный теоретик отвечал: "Поищите местечко погорячее!".

И в конечном итоге он оказался прав: в центре звезды действительно идет термоядер ная реакция (другое дело, что так называемая "стандартная солнечная модель", основанная на представлениях о термоядерном синтезе, по-видимому, оказалась неверной - см., например, "Наука и жизнь" №№ 2, 3, 2000 г.). Но тем не менее реакция в центре звезды проходит, звезда светит, а излучение, которое при этом возникает, удерживает ее в стабильном состоянии. Но вот ядерное "горючее" в звезде выгорает. Выделение энергии прекращается, излучение гаснет, и сила, сдерживающая гравитационное притяжение, исчезает. Существует ограничение на массу звезды, после которого звезда начинает необратимо сжиматься. Расчеты показывают, что это происходит, если масса звезды превышает две-три массы Солнца.

ГРАВИТАЦИОННЫЙ КОЛЛАПС

Вначале скорость сжатия звезды невелика, но его темп непрерывно возрастает, поскольку сила притяжения обратно пропорциональна квадрату расстояния. Сжатие становится необратимым, сил, способных противодействовать самогравитации, нет. Такой процесс называется гравитационным коллапсом. Скорость движения оболочки звезды к ее центру увеличивается, приближаясь к скорости света. И здесь начинают играть роль эффекты теории относительности.

Скорость убегания была рассчитана исходя из ньютоновсих представлений о природе света. С точки зрения общей теории относительности явления в окрестностях коллапсирующей звезды происходят несколько по-другому. В ее мощном поле тяготения возникает так называемое гравитационное красное смещение. Это означает, что частота излучения, исходящего от массивного объекта, смещается в сторону низких частот. В пределе, на границе сферы Шварцшильда, частота излучения становится равной нулю. То есть наблюдатель, находящийся за ее пределами, ничего не сможет узнать о том, что происходит внутри. Именно поэтому сферу Шварцшильда и называют горизонтом событий.

Но уменьшение частоты равнозначно замедлению времени, и, когда частота становится равна нулю, время останавливается. Это означает, что посторонний наблюдатель увидит очень странную картину: оболочка звезды, падающая с нарастающим ускорением, вместо того, чтобы достигнуть скорости света, останавливается. С его точки зрения, сжатие прекратится, как только размеры звезды приблизятся к гравитационному ради
усу. Он никогда не увидит, чтобы хоть одна частица "нырнула" под сферу Шварцшиль да. Но для гипотетического наблюдателя, падающего на черную дыру, все закончится в считанные мгновения по его часам. Так, время гравитационного коллапса звезды размером с Солнце составит 29 минут, а гораздо более плотной и компактной нейтронной звезды - только 1/20 000 секунды. И здесь его подстерегает неприятность, связанная с геометрией пространства-времени вблизи черной дыры.

Наблюдатель попадает в искривленное пространство. Вблизи гравитационного радиуса силы тяготения становятся бесконечно большими; они растягивают ракету с космонавтом-наблюдателем в бесконечно тонкую нить бесконечной длины. Но сам он этого не заметит: все его деформации будут соответствовать искажениям пространственно-временн ых координат. Эти рассуждения, конечно, относятся к идеальному, гипотетическому случаю. Любое реальное тело будет разорвано приливными силами задолго до подхода к сфере Шварцшильда.

РАЗМЕРЫ ЧЕРНЫХ ДЫР

Размер черной дыры, а точнее - радиус сферы Шварцшильда пропорционален массе звезды. А поскольку астрофизика никаких ограничений на размер звезды не накладывает, то и черная дыра может быть сколь угодно велика. Если она, например, возникла при коллапсе звезды массой 10 8 масс Солнца (или за счет слияния сотен тысяч, а то и миллионов сравнительно небольших звезд), ее радиус будет около 300 миллионов километров, вдвое больше земной орбиты. А средняя плотность вещества такого гиганта близка к плотности воды.

По-видимому, именно такие черные дыры находятся в центрах галактик. Во всяком случае, астрономы сегодня насчитывают около пятидесяти галактик, в центре которых, судя по косвенным признакам (речь о них пойдет ниже), имеются черные дыры массой порядка миллиарда (10 9) солнечной. В нашей Галактике тоже, видимо, есть своя черная дыра; ее массу удалось оценить довольно точно - 2,4 . 10 6 ±10% массы Солнца.

Теория предполагает, что наряду с такими сверхгигантами должны были возникать и черные мини-дыры массой порядка 10 14 г и радиусом порядка 10 -12 см (размер атомного ядра). Они могли появляться в первые мгновения существования Вселенной как проявление очень сильной неоднородности пространства-времени при колоссальной плотности энергии. Условия, которые были тогда во Вселенной, исследователи сегодня реализуют на мощных коллайдерах (ускорителях на встречных пучках). Эксперименты в ЦЕРНе, проведенные в начале этого года, позволили получить кварк-глюонную плазму - материю, существовавшую до возникновения элементарных частиц. Исследования этого состояния вещества продолжаются в Брукхевене - американском ускорительном центре. Он способен разогнать частицы до энергий, на полтора-два порядка более высоких, чем ускоритель в
ЦЕРНе. Готовящийся эксперимент вызвал нешуточную тревогу: не возникнет ли при его проведении черная мини-дыра, которая искривит наше пространство и погубит Землю?

Это опасение вызвало столь сильный резонанс, что правительство США было вынуждено созвать авторитетную комиссию для проверки такой возможности. Комиссия, состоявшая из видных исследователей, дала заключение: энергия ускорителя слишком мала, чтобы черная дыра могла возникнуть (об этом эксперименте рассказано в журнале "Наука и жизнь" № 3, 2000 г.).

КАК УВИДЕТЬ НЕВИДИМОЕ

Черные дыры ничего не излучают, даже свет. Однако астрономы научились видеть их, вернее - находить "кандидатов" на эту роль. Есть три способа обнаружить черную дыру.

1. Нужно проследить за обращением звезд в скоплениях вокруг некоего центра гравитации. Если окажется, что в этом центре ничего нет, и звезды крутятся как бы вокруг пустого места, можно достаточно уверенно сказать: в этой "пустоте" находится черная дыра. Именно по этому признаку предположили наличие черной дыры в центре нашей Галактики и оценили ее массу.

2. Черная дыра активно всасывает в себя материю из окружающего пространства. Межзвездная пыль, газ, вещество ближайших звезд падают на нее по спирали, образуя так называемый аккреционный диск, подобный кольцу Сатурна. (Именно это и пугало в брукхевенском эксперименте: черная мини-дыра, возникшая в ускорителе, начнет всасывать в себя Землю, причем процесс этот никакими силами остановить было бы нельзя.) Приближаясь к сфере Шварцшильда, частицы испытывают ускорение и начинают излучать в рентгеновском диапазоне. Это излучение имеет характерный спектр, подобный хорошо изученному излучению частиц, ускоренных в синхротроне. И если из какой-то области Вселенной приходит такое излучение, можно с уверенностью сказать - там должна быть черная дыра.

3. При слиянии двух черных дыр возникает гравитационное излучение. Подсчитано, что если масса каждой составляет около десяти масс Солнца, то при их слиянии за считанные часы в виде гравитационных волн выделится энергия, эквивалентная 1% их суммарной массы. Это в тысячу раз больше той световой, тепловой и прочей энергии, которую излучило Солнце за все время своего существования - пять миллиардов лет. Обнаружить гравитаци онное излучение надеются с помощью гравитационно-волновых обсерваторий LIGO и других, которые строятся сейчас в Америке и Европе при участии российских исследователей (см. "Наука и жизнь" № 5, 2000 г.).

И все-таки, хотя у астрономов нет никаких сомнений в существовании черных дыр, категорически утверждать, что в данной точке пространства находится именно одна из них, никто не берется. Научная этика, добросовестность исследователя требуют получить на поставленный вопрос ответ однозначный, не терпящий разночтений. Мало оценить массу невидимого объекта, нужно измерить его радиус и показать, что он не превышает шварцшильдовский. А даже в пределах нашей Галактики эта задача пока не разрешима. Именно поэтому ученые проявляют известную сдержанность в сообщениях об их обнаружении, а научные журналы буквально набиты сообщениями о тео-ретических работах и наблюдениях эффектов, способных пролить свет на их загадку.

Есть, правда, у черных дыр и еще одно свойство, предсказанное теоретически, которое, возможно, позволило бы увидеть их. Но, правда, при одном условии: масса черной дыры должна быть гораздо меньше массы Солнца.

ЧЕРНАЯ ДЫРА МОЖЕТ БЫТЬ И "БЕЛОЙ"

Долгое время черные дыры считались воплощением тьмы, объектами, которые в вакууме, в отсутствии поглощения материи, ничего не излучают. Однако в 1974 году известный английский теоретик Стивен Хокинг показал, что черным дырам можно приписать температуру, и, следовательно, они должны излучать.

Согласно представлениям квантовой механики, вакуум - не пустота, а некая "пена пространства-времени", мешанина из виртуалных (ненаблюдаемых в нашем мире) частиц. Однако квантовые флуктуации энергии способны "выбросить" из вакуума пару частица-античастица. Например, при столкновении двух-трех гамма-квантов как бы из ничего возникнут электрон и позитрон. Это и аналогичные явления неоднократно наблюдались в лабораториях.

Именно квантовые флуктуации определяют процессы излучения черных дыр. Если пара частиц, обладающих энергиями E и -E (полная энергия пары равна нулю), возникает в окрестности сферы Шварцшильда, дальнейшая судьба частиц будет различной. Они могут аннигилировать почти сразу же или вместе уйти под горизонт событий. При этом состояние черной дыры не изменится. Но если под горизонт уйдет только одна частица, наблюдатель зарегистрирует другую, и ему будет казаться, что ее породила черная дыра. При этом черная дыра, поглотившая частицу с энергией -E , уменьшит свою энергию, а с энергией E - увеличит.

Хокинг подсчитал скорости, с которыми идут все эти процессы, и пршел к выводу: вероятность поглощения частиц с отрицательной энергией выше. Это значит, что черная дыра теряет энергию и массу - испаряется. Кроме того она излучает как абсолютно черное тело с температурой T = 6 . 10 -8 M с /M кельвинов, где M с - масса Солнца (2 . 10 33 г), M - масса черной дыры. Эта несложная зависимость показывает, что температура черной дыры с массой, в шесть раз превышающей солнечную, равна одной стомиллионной доле градуса. Ясно, что столь холодное тело практически ничего не излучает, и все приведенные выше рассуждения остаются в силе. Иное дело - мини-дыры. Легко увидеть, что при массе 10 14 -10 30 граммов они оказываются нагретыми до десятков тысяч градусов и раскалены добела! Следует, однако, сразу отметить, что противоречий со свойствами черных дыр здесь нет: это излучение испускается слоем над сферой Шварцшильда, а не под ней.

Итак, черная дыра, которая казалась навеки застывшим объектом, рано или поздно исчезает, испарившись. Причем по мере того, как она "худеет", темп испарения нарастает, но все равно идет чрезвычайно долго. Подсчитано, что мини-дыры массой 10 14 граммов, возникшие сразу после Большого взрыва 10-15 миллиардов лет назад, к нашему времени должны испариться полностью. На последнем этапе жизни их температура достигает колоссальной величины, поэтому продуктами испарения должны быть частицы чрезвычайно высокой энергии. Возможно, именно они порождают в атмосфере Земли широкие амосферные ливни - ШАЛы. Во всяком случае, происхождение частиц аномально высокой энергии - еще одна важная и интересная проблема, которая может быть вплотную связана с не менее захватывающими вопросами физики черных дыр.

Черная дыра - один из самых загадочных объектов во Вселенной. О возможности существования черных дыр говорили многие известные ученые, в том числе и Альберт Эйнштейн. Черные дыры своим названием обязаны американскому астрофизику Джону Уиллеру. Во Вселенной можно встретить два типа черных дыр. Первый - это массивные черные дыры - огромные тела, масса которых в миллионы раз больше массы Солнца. Такие объекты, как предполагают ученые, размещены в центре галактик. В центре нашей Галактики тоже находится гигантская Черная дыра. Ученым пока не удалось выяснить причины появления таких огромных космических тел.

Точка зрения

Современная наука недооценивает значение понятия «энергия времени», введенного в научный обиход советским ученым-астрофизиком Н.А. Козыревым.

Мы доработали представление об энергии времени, в результате чего появилась новая философская теория - «идеальный материализм». Эта теория дает альтернативное объяснение природы и строения черных дыр. Черным дырам в теории идеального материализма отводится ключевая роль, и, в частности, в процессах происхождения и баланса энергии времени. Теория объясняет, почему в центрах практически всех галактик располагаются сверхмассивные черные дыры. На сайте можно будет ознакомиться с этой теорией, но после соответствующей подготовки. см. материалы сайта).

Область в пространстве и времени, притяжение гравитации которой имеет настолько большую силу, что её не могут покинуть даже объекты, движущиеся со скоростью света, называется чёрной дырой. Граница черной дыры обозначается как понятие «горизонт событий», а её размер - как радиус гравитации. В самом простом случае он равен радиусу Шварцшильда.

Тот факт, что существование чёрных дыр теоретически возможно, можно доказать из некоторых точных уравнений Эйнштейна. Первое из них было получено в 1915 году тем самым Карлом Шварцшильдом. Неизвестно кто был первым, изобретшим данный термин. Можно только говорить о том, что само обозначение явления популяризовалось благодаря Джону Арчибальду Уилеру, впервые опубликовавшему лекцию «Наша Вселенная: известное и неизвестное (Our Universe: the Known and Unknown)», где и было употреблено. Намного раньше эти объекты назывались «сколлапсировавшими звёздами» или «коллапсарами».

Вопрос о том, существуют ли черные дыры на самом деле, связан с реальным существованием гравитации. В современной науке самой реальной теорией гравитации является общая теория относительности, которая четко определяет возможность существования чёрных дыр. Но, всё же, их существование возможно и в рамках других теорий, поэтому данные постоянно анализируются и интерпретируются.

Утверждение о существовании реально существующих чёрных дыр следует понимать в подтверждении существования плотных и массивных астрономических объектов, которые можно интерпретировать как черные дыры теории относительности. Помимо этого, к подобному явлению можно относить звезды на поздних стадиях коллапса. Современные астрофизики не придают значения различию между такими звездами и настоящими черными дырами.

Многие из тех, кто изучали или изучают до сих пор астрономию, знают, что такое черная дыра и откуда она появляется . Но все же, для простых людей, кто этим особо не интересовался, я вкратце всё объясню.

Черная дыра — это некая область в пространстве космоса или даже времени в нем. Только это не обычная область. Она обладает очень сильной гравитацией (притяжением). При том настолько сильной, что из черной дыры не может выбраться, если попадет туда, нечто! Даже солнечные лучи не смогут избежать попадания в черную дыру, если та проходит рядом. Хотя, знайте, что солнечные лучи (свет) движутся со скоростью света - 300.000 км/сек.

Ранее черные дыры называли по другому: коллапсары, сколлапсировавшие звёзды, застывшие звезды и так далее. Почему? Потому что черные дыры появляются благодаря умершим звездам.

Дело в том, что, когда звезда истощает весь свой запас энергии, она становится очень горячим гигантом, и в итоге, она взрывается. Её ядро, с некоторой вероятностью может очень сильно сжаться. При том, с невероятной скоростью. В некоторых случаях, после взрыва звезды, образовывается черная, невидимая дыра, которая пожирает всё на своем пути. Все объекты, которые даже двигаются со скоростью света.

Черной дыре не важно какие объекты поглощать. Это могут быть как космические корабли, так и лучи солнца. Не важно с какой скоростью движется объект. Черной дыре также не важно и какова масса объекта. Она может сожрать всё, начиная от космических микробов или пыли, вплоть до самих звезд.

К великому сожалению, ещё никто не выяснил того, что твориться внутри черной дыры. Одни предполагают, что объект, который попадает в черную дыру, разрывает с невероятной силой. Другие же считают, что выход из черной дыры может вести в другую, некую вторую вселенную. Третьи же полагают, что (наиболее вероятно), если вы пройдете от входа до выхода черной дыры, она просто-напросто может выбросить вас в другой части вселенной.

Чёрная дыра в космосе

Чёрная дыра - это космический объект невероятной плотности, обладающий абсолютной гравитацией, такой, что любое космическое тело и даже само пространство и время, поглощаются ею.

Чёрные дыры управляют самой эволюцией вселенной . они на центральном месте, но их не возможно увидеть, можно обнаружить их признаки. Хотя чёрные дыры обладают свойством разрушать, они также помогают строить галактики.

Некоторые учёные считают, что чёрные дыры являются воротами в параллельные вселенные . что вполне может быть. Существует мнение что у чёрных дыр есть противоположно, так называемые белые дыры . обладающие анти-гравитационными свойствами.

Чёрная дыра рождается внутри самых крупных звёзд, когда те умирают, сила тяжести разрушает их, приводя тем самым к мощному взрыву сверхновой звезды .

Существования черных дыр было предсказано Карлом Шварцшильдом

Карл Шварцшильд был первым, кто применил общую теорию относительности Эйнштейна, для того, чтобы обосновать существование «точки невозврата». Сам Эйнштейн не задумывался о черных дырах, хотя его теория позволяет предсказать их существование.

Шварцшильд сделал свое предположение в 1915 году, сразу вслед за тем, как Эйнштейн опубликовал общую теорию относительности. Тогда же возник термин «радиус Шварцшильда» - это величина, которая показывает, как сильно вам придется сжать объект, чтобы он стал черной дырой.

Теоретически, черной дырой может стать все, что угодно, при достаточной степени сжатия. Чем плотнее объект, тем более сильное гравитационное поле он создает. Например, Земля стала бы черной дырой, если бы ее массой обладал объект величиной с арахис.

Источники: www.alienguest.ru, cosmos-online.ru, kak-prosto.net, nasha-vselennaya.ru, www.qwrt.ru

Священный колодец майя

Вторжение в подсознание

Термоядерный ракетный двигатель – первые испытания

Шабаш на Лысой горе

Американизм – новая идеология трансформации мира

Ракетный двигатель EmDrive: полет без рабочего тела

Информационные агентства распространили сообщение об успешном испытании специалистов NASA ракетного двигателя EmDrive. Подробного описания принципа действия данного двигателя не приводится,однако заявляется...

Города Ирака: Эрбиль

Город Эрбиль (Арбиль, Хаулер или Хевлер) является столицей Иракского Курдистана. Расположенный в междуречье у подножия гор, Эрбиль является одним...

Новый дом на новом месте

Решение о строительстве собственного дома предполагает тщательное продумывание проекта с учетом времени и средств, вложенных в новое жилье. На первом этапе строительства...

История города Алеппо

Древняя и невероятно красивая страна, в которой тесно переплетаются христианство и ислам, а также множество культур и народов это Сирия. Алеппо...

Языковые туры в Англию

Практика, всегда надежнее теории. С этой мыслью жители страны бывшего СССР отправляются на территорию Англии с целью закрепить умения...

Жемчужина Южнобережья

Ялос! Ялос! – радостно закричали греческие моряки, когда после многодневного, утомительного, морского путешествия наконец-то увидели берег. Вот почему, когда греки...

Чёрная дыра возникает в результате коллапса сверхмассивной звезды, в ядре которой заканчивается «топливо» для ядерной реакции. По мере сжатия температура ядра повышается, а фотоны с энергией более 511 кэВ, сталкиваясь, образуют электрон-позитронные пары, что приводит к катастрофическому снижению давления и дальнейшему коллапсу звезды под воздействием собственной гравитации.

Астрофизик Этан Сигел (Ethan Siegel) опубликовал статью «Крупнейшая чёрная дыра в известной Вселенной» , в которой собрал информацию о массе чёрных дыр в разных галактиках. Просто интересно: где же находится самая массивная из них?

Поскольку наиболее плотные скопления звёзд - в центре галактик, то сейчас практически у каждой галактики в центре находится массивная чёрная дыра, образованная после слияния множества других. Например, в центре Млечного пути есть чёрная дыра массой примерно 0,1% нашей галактики, то есть в 4 млн раз больше массы Солнца.

Определить наличие чёрной дыры очень легко, изучив траекторию движения звёзд, на которые воздействует гравитация невидимого тела.

Но Млечный путь - относительно маленькая галактика, которая никак не может иметь у себя самую большую чёрную дыру. Например, недалеко от нас в скоплении Девы находится гигантская галактика Messier 87 - она примерно в 200 раз больше нашей.

Так вот, из центра этой галактики вырывается поток материи длиной около 5000 световых лет (на фото). Это сумасшедшая аномалия, пишет Этан Сигел, но выглядит очень красиво.

Учёные считают, что объяснением такого «извержения» из центра галактики может быть только чёрная дыра. Расчёт показывает, что масса этой чёрной дыры где-то в 1500 раз больше, чем масса чёрной дыры в Млечном пути, то есть примерно 6,6 млрд масс Солнца.

Но где же во Вселенной самая большая чёрная дыра? Если исходить из расчёта, что в центре почти каждой галактики имеется такой объект с массой 0,1% от массы галактики, то нужно найти самую массивную галактику. Учёные могут дать ответ и на этот вопрос.

Самая массивная из известных нам - галактика IC 1101 в центре скопления Abell 2029, который находится от Млечного пути в 20 раз дальше, чем скопление Девы.

В IC 1101 расстояние от центра до самого дальнего края - около 2 млн световых лет. Её размер вдвое больше, чем расстояние от Млечного пути до ближайшей к нам галактики Андромеды. Масса почти равняется массе всего скопления Девы!

Если в центре IC 1101 есть чёрная дыра (а она должна там быть), то она может быть самой массивной в известной нам Вселенной.

Этан Сигел говорит, что может и ошибиться. Причина - в уникальной галактике NGC 1277. Это не слишком большая галактика, чуть меньше нашей. Но анализ её вращения показал невероятный результат: чёрная дыра в центре составляет 17 млрд солнечных масс, а это аж 17% общей массы галактики. Это рекорд по соотношению массы чёрной дыры к массе галактики.

Есть и ещё один кандидат на роль самой большой чёрной дыры в известной Вселенной. Он изображён на следующей фотографии.

Странный объект OJ 287 называется блазар . Блазары - особый класс внегалактических объектов, разновидность квазаров. Они отличаются очень мощным излучением, которое в OJ 287 меняется с циклом 11-12 лет (с двойным пиком).

По мнению астрофизиков, OJ 287 включает в себя сверхмассивную центральную чёрную дыру, по орбите которой вращается ещё одна чёрная дыра меньшего размера. Центральная чёрная дыра в 18 млрд масс Солнца - самая большая из известных на сегодняшний день.

Эта парочка чёрных дыр станет одним из самых лучших экспериментов для проверки общей теории относительности, а именно - деформации пространства-времени, описанной в ОТО.

Из-за релятивистских эффектов перигелий чёрной дыры, то есть ближайшая к центровой чёрной дыре точка орбиты, должен смещаться на 39° за один оборот! Для сравнения, перигелий Меркурия сместился всего на 43 арксекунды за столетие.